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The Vortex Method With Finite Elements 

By Claude Bardos, Michel Bercovier and Olivier Pironneau 

Abstract. This work shows that the method of charcteristics is well suited for the numerical 
solution of first order hyperbolc partial differential equations whose coefficients are 
approximated by functions piecewise constant on a finite element triangulation of the 
domain of integration. We apply this method to the numerical solution of Euler's equation 
and prove convergence when the time step and the mesh size tend to zero. The proof is 
based upon the results of regularity given by Kato and Wolibner and on LX estimates for 
the solution of the Dirichlet problem given by Nitsche. The method obtained belongs to the 
family of vortex methods usually studied in a finite difference context. 

Introduction. The vortex method is based on an old concept of fluid mechanics 
which says that for two-dimensional nonviscous flows the vorticity in the fluid is 
transported by the flow; thus, if the initial distribution of vorticity consists of a 
finite number of point vortices, the flow at later times can be found by transport of 
these point vortices along the streamlines of the flow that they create. 

In mathematical terms this means that the two-dimensional stream function- 
vorticity formulation of Euler's equations 

(I) t at + uV& =0, - ' = co, u =VA'Jin 2 x]0, T[, 

(t = 0) = 2 W (x - x), *IFIr = 

where 8 is the Dirac function, F, the boundary of Q2, is integrated by 

W(x, t) = E: wi2(x-Xi(t)), 

(2) i = VA4(xi, t), xi(t = ( ) = x 

-A'P = 2 ox16s(x - X,(t)), "Ir = o 

This method was first implemented by Christiansen [6] and Chorin [5] and 
thoroughly tested by Baker [2] on the roll up of vortex sheets. From the theoretical 
point of view if 2 = R2 Hald [10] showed that when (2) is discretized explicitly in 
time, when the Dirichlet problem is approximated by a suitable discretization of 
the corresponding Green's function and when the Dirac functions are smoothed by 
appropriate convolutions then the method converges. In Baker [2] the Dirichlet 
problem is discretized with finite differences, and as far as we know the conver- 
gence is not established in such a case. 

The present work is based on the rather straightforward observation that the 
system (2) is perhaps easier to analyze when it is discretized by the finite element 
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method than by the two previously mentioned methods because the equation for 
the characteristics xi(t) can be integrated exactly if VAI is piecewise constant on a 
triangulation of Q x ]0, T[. However, the error analysis shows that in the finite 
element context it is no longer feasible to work with Dirac functions; it is better to 
use a piecewise constant discretization of wo(x). Therefore, we shall not work with 
point vortices but with a piecewise constant approximation of the vortex field 

N 

(3) W(x, t) = E (jj()I(X - x(t)) 
i=l1 

where I(x - xi(t)) equals 1 if x and xi(t) belong to the same element of the 
triangulation and zero otherwise, where N is the total number of elements and 
wherej(i) is the index of the element to which xi(O) belongs. Therefore we will have 
to compute certain characteristics backward in t in order to define o(x, t) by (3). 

Thus, although in spirit identical, in practice the present method is substantially 
different from the point vortex method of [2] and [5]. Both have the advantage of 
being nondissipative; ours is conservative in a statistical sense only in terms of o0. 
On the other hand, we do not have to insert new vortices in some regions of the 
flow as in [6] and the method is more appropriate to smooth flows. But most of all 
an error analysis will be given and the method is unconditionally stable in time. 
This, by the way, may also be true of the cloud and cell vortex method [5], [2] as 
was observed by Baker. 

The proofs are involved and difficult in their details but the guidelines are 
simple: we assume that the regularity obtained by Wolibner [14] and Kato [11] for 
the solution holds. Thus, to measure the error between the exact solution and the 
appropriate solution we measure the distance between two particles, one trans- 
ported by the exact flow and the other by the approximate flow. In the process LX 
estimates of the finite element solution of the Dirichlet problem for -/ will have to 
be established following the arguments of Nitsche [12]. 

For the sake of clarity and also because the method of characteristics in the 
finite element context can be useful for other hyperbolic systems, we begin with a 
presentation of the method for the transport equation. Then, in Section 2 the 
method and the error analysis is explained for the two-dimensional Euler equation. 

Finally, the numerical implementation and some numerical tests are presented in 
Section 3. 

1. Finite Elements and Characteristics for the Transport Equation. 
1. a. Statement of the Problem. Let Q be a bounded open set of R', let Q= 

Q x ]0, T[, and u a divergence free (V.u = 0) vector of (Hl(Q) n L?(Q))n. 
Letf and po be two functions of L'(Q) and consider the problem 

(1.1) aP + uVp = f in Q x ]0, T[ = Q, 

p(x, t) = po(x, t) forall {x, t} E S = Q x {O} U 2-, 

where IF is the boundary of Q, v is outward normal and 2-= {{x, t}: u(x, t) * v < 
0, x E IF}. 

E- represents the part of the boundary of Q where the flow enters into Q; thus 
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the boundary conditions for p are given at initial time and when the velocity u 
enters into U. 

Several physical phenomena are governed by this equation, known as the 
transport equation. On rectangular domains Q (1.1) is easily discretized by any 
upwind finite difference scheme, but if Q is complicated there is no simple 
nondissipative finite element scheme, and the method of characteristics is usually 
considered as an expensive numerical method. Let us show that for first order 
accurate discretizations this is not so costly. 

The method of characteristics is based upon the following observation: given 
{x, t)} E Q define {XX'(T), T} by 

(1.2) ~dX _fU(X(T-), T-) if X(T-) Ez 0i, ,, 

(1-2) dT- 0 if X(T)(, = ( () )E ]O, t[( 

X(t) = x. 

If u is uniformly Lipschitz continuous with respect to x, (1.2) has a unique solution 
on ]0, t[; then we define 

(1.3) p(x, t) = p0(XXl(0), 0) + f tf(XX'I)(T) dT 

and claim that p is a solution of (1.1). If the data u, po and f are not smooth the 
proof is difficult [15], but if po, f and u are in C '(Q), then p is differentiable with 
respect to {x, t} and 

k(xXl(T), T) - p(x t) = ?aP(T - t) + V'k(xx'I(T) - x) 

(1.4) +O(T - t) + o(X - x) 

= ay +Uvxk)(T - t)+o(T-t) 

and also 
T 

k(XXl'(r), T) _- (x, t) = f(XX t(a), ) da. 

Therefore we have the following result: 

PROPOSITION 1. When u is uniformly Lipschitz continuous in x and divergence free 
and po, u andf are in L??(Q), then the solution of (1.1) is given by (1.2), (1.3). 

Remark. Equation (1.2) includes the possibility that a characteristic leaves Q 
before t = 0 with the convention that fIF = 0. 

l.b. Discretization. To discretize (1.1) we choose a triangulation 3h of Q made of 
nonoverlapping triangles if n = 2 or tetrahedra if n = 3 with the usual properties 
[4]: 

=h {Ti} i1' 

(1.5) Ti n Tj= 0 or one vertex, or one side (or face), (or one edge), 
N 

U T = Qh c Q, distance (oh, Q) = O(h2), h = size of largest side of 3h. 
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If At denotes a time step then Q is approximated by 

(1-6) Qh = U Py; PQJ = Ti X ] jAt, (j + I)At[, j =1...,M = E(TIAt). 

Instead of u we shall approximate the stream function I of u, i.e. the function such 
that 

u=VA'I' ~( 3 _ 2 a1 _ a3 a"2 _ a*1 if 3 ax2 ax3' ax3 ax I ax, ax2 
(1.7) / a 

- a) f 
= _ 1f~~ifn = 2. ax2' ax, 

Let 4h be an approximation of I in the space Hh: 

(1.8) Hh = {Th: (h is continuous in x; V mhI p is linear in x and constant in t, Vi}. 

Then we approximate u by a function which is constant on each P.: 
(1.9) Uh =VAIh 

and we shall denote by ph(X, t) the soluton of 

at h+ Ph in 2h X ]0, T[, 
(1.10) t 

ph(x, t) Poh(x, t) on Sh, 

where fh and POh are piecewise constant approximations of f and po. 
Even though ph, given by (1.10), belongs to a finite-dimensional function space 

we approximate it further by choosing a point {ti, U) in each P. and set 

(1.1 1) Ph(X, t) = ph(QU ti) V/{X, t} Ei P Vi =1, . . ., N, j = 1, . . ., M. 

PROPOSITION 2. For almost all choices of {t ', tU) E Pij, Ph is uniquely defined by 
(1.10), (1.11) and computable in a finite number of operations by the following 
algorithm. 

Algorithm 1: Computes the solution of (1.10) for one x and t. 
1. Find the prism Pij which contains {x, t}; set {xo, to) = {x, t} and m = 0. 
2. Compute X E R such that {xm - Xuh(xm, tm), tm - X} E aP the 

boundary of Py. 
3. Set xm+ I 

xm-uh(xm, tm), tm+l =t m A If tm+ = Oor x m E aO 
to 4, else find Pkl such that 

(1.12) {xtM+ 1 tm+ I) }E Pk Uh(X ,E tm+l)Il points inside Pk,, 

and go back to 2 with m = m + 1, i = k,j = 1. 
4. Set P h(X, t) = Poh(x tm+l) + EM f(',t)('' ). ( ) POh (X 

M 

t ) E Ofh(XiI ti)(ti+1 ti 

Proof. Since uh is piecewise constant on Qh, the characteristic that passes through 
a given point {x, t} is a broken straight line, which is determined by its nodes. 
These are located at the discontinuities of uh, therefore on the boundaries of the P. 

Condition (1.9) insures that a Pk, satisfying the condition of step 3 can be found. 
In fact in the sense of distributions uh is divergence free. Therefore, the normal 
components of uh are continuous across the sides of the triangles thus (1.12) can be 
fulfilled. However, this procedure does not give a unique solution whenever the 
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broken straight line passes through a vertex. This is why Proposition 2 is stated for 
almost all {t, tj). Ej 

Algorithm 1 simply states that the characteristic to be computed can be found by 
starting from { x, t} and following the directions-uh from one P,, to the next. 

Remark. Construction (1.9) may prove to be expensive because it costs a 
Dirichlet problem at each time step. In most cases uh can be discretized directly but 
then the algorithm may get stuck in one element. 

1.c. Implementation. In practice one usually computes Ph for all { x, t) E Qh: 

therefore it would be too costly to compute N x M characteristics. It is more 
feasible to proceed as follows: Pick one point in each element and compute the 
characteristic that begins here forward in time. If at some time step an element is 
not crossed by one of these characteristics, pick a new point inside the element and 
compute the characteristic backward in time that ends at this new point. At each 
time step make sure that no more than N characteristics are stored, i.e. discard 
some characteristics if they end up in the same element. This gives the following 
algorithm: 

Algorithm 2: Computes ph(x, t) solution of (1.10)-(l.1 1) for all {x, t} E Qh. 

O.Choose 0e Ti, i= 1,.. .,N. Sett?=O,j=O. 
1. Foralli = 1, toMdo 
with Procedure F( ti, At, Uh, 1) compute all the nodes {xy, tny}n of the 

characteristic solution of 

(1.13) dx tU ((x, r) ifxEQh, 

dT O otherwise, 

for all T E ]tj, ti + At] with X(t') -0. 

Set 

(1.14) (k(i)j+ I X 
m ij, ti+ I = ti + At, 

my-1 

(1.15) Ph( (~ k()j ,I tj ') = PhWl2 tj) + Ei fh(Xmo, dm)(dm+1 timi), 

where k(i) is such that 

(1.16) (k(i E Pk(i)j+1. 

2. For all i' < N such that there are no k(i) = i' with Procedure 
F(ti?, t'+', t'-u -ht'', -t^, -1) compute all the nodes {xmy, tmy}7v of the 
characteristic solution of (1.13) for all T E ]O, tj+'] with X(tj+') = (i'O and set 

(1.17) (i>+l = tio 

(1.18) Ph(V , t') POh(X(O)) + 2fh(Xm', tmZ)(tm - tm+i). 

3. Replacej byj + 1 and stop if j > M, else keep only one C per Ti and go back 
to 1. 

Remark. The nodes {xm,i, tm' } of the characteristics are the vertices of these 
broken lines. 



124 CLAUDE BARDOS, MICHEL BERCOVIER AND OLIVIER PIRONNEAU 

Procedure F(t, T, AT, Vh, c). Computes with the method of Algorithm 1 the 
intersections {fxm, tm } with the boundaries aP.. of the elements of the triangulation 
of Qh, of the characteristic X(t) solution of 

dX = vh (X, t), or 0 if X S4 h 
on 

[T 
T 
- 

AT] 
T[if e - I, 

(11) dth on [T--AT,T[ ifE=-1, 

with X(T) = 

Alternatively we may choose to use 

Algorithm 3: Computes the solution ph(X, t) of (1.10), (1.11). 
0. Choose 0 = T/r, r E N. 
1. For i = 1 to r compute with Algorithm 2 the solution of (1.10), (1.11), over 

t E [(i - 1)9, i9[ with Ph(., (i - 1)9) for initial condition. 

Comments. For regular fields uh most elements are expected to contain one end 
point of the characteristics that are computed forward in time. For those elements 
which have no such characteristic at a given time we pick any point, here (i?, and 
compute the characteristic that ends at (i?, backward in time; last, note that it is 
not absolutely necessary to go back till t = 0; the user may pick a time 9 and ph(t) 
can be computed from ph(t - 9) according to (1.18); this gives Algorithm 3. These 
schemes could be made conservative by putting appropriate weights in (1.14), (1.15) 
according to the number of characteristics that end in the same element and start 
from the same element, but the error analysis below would no longer be valid. 

The number of operations, NX, of Algorithm 3 is of the order of 

D D2T IUhA?t \ UhO0 (1.20) NX < ( D imaxi + v )C 
h2L\t h 1+ t 

where Cl is some constant of the order of 10, v is an upper bound on the number of 
backward characteristics computed at each time step, D is the diameter of oh' 

We have found that the best choice for At is the one that makes the characteris- 
tics cross one element, i.e., 

(1.21) At z h/uh. 

Then even for 0 = T, assuming that v is of the order of D/h, the method is 
0(1/h3), that is, comparable to the work necessary to solve a Dirichlet problem with a 
good finite element method. 

l.d. Error Analysis. We shall denote by I * the LP(2) norm. For convenience 
we assume that u * n = 0 on IF, in order to derive the error estimates in this section. 

THEOREM 1. If Ph is computed by Algorithm 2 then the L?? error is 0(h + At) for 
smooth data. More precisely 

(1.T2K I-Ph(+, 
t) - p 

CV)lA -o 
< Tlfh -fj0.o + 1POh POLM, + C21VATh VAT100,Q 
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Proof. Let Xh, t be a characteristic computed by Algorithm 1. Then 

IPh(x, t) - p(x, t)| < |ftfh(XhX'(T), T) - f(X x (T), T)I dT 

+ .P Oh(XX" (0)) - pO(Xh't(o))I 

(1.23) < m VI]oo,QJ IXh' (T) X Xt(T)I dT + fh - AlI,Q 
+ I VPO I o1 Xh"' (0) - 

xxt (0)I + IPOh 
- Po| o a- 

On the other hand 

(1.24) 6(T) = Xh't(T) - Xx,t(T) 

satisfies 

(1.25) 18| = IVA*h(Xh, T) - 'VAI(x, T)I < ?IVA4h - VA*1lrQ + I*''lm Q8a 

and from the Bellman-Gronwall lemma this yields 

(1.26) (T) IVAh VA Q (-I + exp(IXI"'KQ(t - )) 

Therefore 

(1.27) Iph(x, t) - p(x, t)+ 
< Tlfh - fK0,Q + 1Poh - Poo,Q + C21'VA*h VA*1OO,Q 

Now we make the same analysis with the characteristics computed forward in time 
and we get the result. 

The fact that (1.22) implies an error of order h and At is classical (see Ciarlet [4], 
for example). L 

Remark. Of course in many applications p is not in Wl1'() and therefore the 
error estimate (1.22) does not hold. For example (1.22) does not hold in case of 
shocks; it only gives an idea of the precision of the method locally in a region 
where the solution is smooth. E1 

It may prove to be too memory-consuming to take 0 = T. 

THEOREM 2. For smooth data Algorithm 3 yields also 

(1.28) INp(' t) - p(-, t)loo, < C3(lt + At) Vt, VO = pAt, p > 1. 

Proof. As for Theorem 1 

Ah |Ph (4 j, jA t) - p( i jA t)| 

< IPh(Xh ((j 
- 

p)At)) 
- 

p(XiSAt((j 
- 

p)At))| 

+ iAt Ifh(Xh'yAt (T), T) -f(X'A(T), T) d) 
(I -P)At 

< |Ph(, (j P)lt) - p(', (j -P)t) I 

+ IVPIo,jXh"JAt((j 
- p)At) - X1dAJt((j - p)At)I 

+ If-fhI ocPAt + I Vif XA Xhi At(T) - X4"At(T)I dT. 
(j-p)At 
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Now we make use of (1.26) with T = (j - p)t and t = j/t to find that 

eh e- + (IVPK + /tp|IVfI ) IV'' Q AI (exp(IapIL,QpAt) - 1) 

+If - fhILePt + IVplch. 
It remains to sum up the above inequalitites fromj = t/It toj = p; it yields 

Iph(., t) - p(., t)lI, s < IVpI(h + /\t) + IPoh - PoI. + IVpI.h/ppt 

+If - fhIjoT(pAtIVflm + IVplK) 
exp(*II"'IQpAt)-1 

I IVAIh - VA*1'I,QT I00,QP LI 

Remark. Thus, from the point of view of error estimates, it does not seem 
necessary to go back very far in time along the characteristics to compute Ph. From 
the point of view of numerical practice, however, there is much less dissipation when 
O is large. 

It is interesting to note that the present framework is well suited to show the 
convergence of the classical method of characteristics. To obtain a scheme that is 
O(h + /t), it is sufficient to use Euler's method to compute Xh'x(.): 

(1.29) Xhx" (t - /t) = x - uh(x, t)/t. 

However, Ph must be interpolated from its values at the vertices of 5Th, piecewise 
linearly in x. Also Xh might not be in ohI, thus uh must be extended outside oh. 
Again for simplicity but without loss of generality we assume u nIr = 0. 

PROPOSITION 3. Under the above assumptions, if Ph(- t) is piecewise linear on 5h 
and Vx vertex of 5Th, Vt E 1(1 - 1)At,jAt[ 

Ph(x, t) = Ph(Xh't(tP ), t 1) + fh(x, t)?\t 

where Xh is computed by (1.29) then for smooth data (u and its extension and f in 
L?(Q), p( , t) in Wl 'o()) 

lph - pl < c(h + Ait + h2/At). 

Proof. We proceed as before: 

|PJ(t,jAt) P(t,JAt)l < |P&, (j - ')At) -p(, (j - 0A1)At) 

+ IV Vfool lXhJtJ (T) - X""&t(T)l dT 
(j- l)At 

+ IVPIOOIXhJAt((j - ')At) - X"tV((j - l)At)j + Ifh -AoAt 

From (1.29) we get 

IXhf' ((j - l)At) - Xiti((j - 1))I< lUh - UILAt. 

which yields the result, because 

Iph(,jAt) - p(.,jAt)|o < max Iph((JAt) - p(t,jAt)| +IV(Vp)l|hX 
( vertex 

Remark. From the point of view of error analysis it is not necessary to compute 
the characteristics with the accuracy chosen but from the numerical point of view 
(1.29) (as well as 0 = Ait in Algorithm 3) introduces a large discretization error. 
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Theoretically the method is nondissipative; for example if Q is a duct and po = 1 
for x < 0 and po = 0 for x > 0 and if u = (1, 0) then Ph can take only the values 1 
or 0. But nevertheless the method will distort the shock, so that in a statistical sense 
it is dissipative. Let us give a heuristic argument to estimate the statistical 
dissipativity of the method. 

Equation (1.10) can be viewed as 

aph- a + (u + qh)Vph= f + h in oh X ]O,1T[, 
(1.30) 

p(X, t) = p0(X, t) + 'q,(X, t) on S, 

where n^, nh h are the errors due to the discretization. 
Assume that each triangulation is taken with a given probability; then the errors 

become random variables and ph can be seen as a random process solution of a 
stochastic partial differential equation. 

It is known that if q, q', q" are Gaussian processes with zero mean then the 
expected value 

- 
of ph will satisfy 

(1.31) a-P + uVp--V (aVp) = f in 0 x ]0, T[, =p onS- 

where a is the variance of 'qh. 
In our case of course it may be difficult to show that 'qh is Gaussian when the 

triangulations 5h are chosen with equal probability, but if it were then a would be 
proportional to h2, so that in all likelihood there exists C4 such that p satisfies (1.31) 
with a = C4h2. Then we may say that statistically the order of dissipation is 0(h2). 

2. Application to the Euler Equation in Two Dimensions: Construction of the 
approximate Solution and Error Bounds. 

2.a. Construction of the Approximate Solution. sa will denote a simply connected 
smooth convex and bounded open set of R2. In this open set we consider the 
solution of the Euler equation 

(2.1) a- + u * Vu = -Vp, V u = O in 0x ]O, T[, at 
(2.2) u(x, t) * n(x)lQ = 0. 

n(x) denotes the outward normal to a, boundary of 2 and (2.2) means that the 
fluid is tangent to the boundary of U. Nonhomogeneous boundary conditions can 
be handled but we restrict ourselves to this case for clarity. When the initial data 
uo(x) or wo(x) = VAuo(x) are known the solution of (2.1) and (2.2) is completely 
determined. Indeed using the stream function 41 or the vorticity w = VAu, one can 
show that (2.1) and (2.2) are equivalent to the equations 

(2.3) a- + uV(=0 inS2XRt, at 

(2.4) u = VA4/ - (ax2' ax=)' 

(2.5) -L/4a = 0= 

We will introduce the Pl approximation of (2.4) and (2.5). We will denote by oh a 
convex polygonal approximation of S2, constructed with a regular triangulation 5h 
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as in l.b. We will assume that the boundary vertices of % belong to aglh n aQ. We 
will denote by Vh the space of continuous functions on Q2h which are linear affine 
on each triangle 1% and which vanish on the boundary aS2. 

The Discretized Problem. uh(x, t) is chosen constant on every prism Pik = Ti x 
[kAt, (k + I)At]; it is defined by the relations 

(2.6) uh(x, t) = VA4hk for t E [kAt, (k + l)At[, 

(2.7) tphk ? Vh and f VlPhkV9h dx = E wh(k, kAt) Oh(x) dx, VOh E Vh. 
uh T, E hT 

wh satisfies the transport equation 

(2.8) a + UhVwh = 0, w(x, 0) = (VAuo)(x) at 

and Eik Pik are chosen according to Algorithm 4 which constructs an exact 
solution of (2.6), (2.8). 

Algorithm 4: Construct a solution of (2.6), (2.8). 
O. Choose ti e Ti, i = 1, . . . N. Set to = O, k = 0. 

Set w(h('0, 0) = VAu0w(ti). 
1. For i = 0 to N do 

compute the solution of (2.6), (2.7) 
with Procedure F(tik, tk, At, Uh, 1) compute all the nodes of {xmk, t,, }'k of the 
characteristic solution of 

(2.9) dX = U(X, r) for all'r E ]tk, tk + At] with X(tk) = (ik. 

Set 
j(i),k XI t+ + at, (4ji),k+l tk+l) = WhWk, tk), 

wherej(i) is such that ~j(i),k+ 1 E 1(i) k+ 1. 

2. For all i' S N such thatj(i) =# i', Vi do 
with Procedure F(t i'?, t k + I, tk+1 , -Uh, - 1) compute all the nodes { x,, t, k }^Ik 
of the characteristic solution of (2.9) for all T E ]0, tk+l[ with X(tk+l) = (i,' 
and set (i',k+l = i',O (i,k+l tk+l) = w(h( '" where I is such that X(0) E 
P',0. 

Remark 1. Algorithm 4 proceeds exactly like Algorithm 2 to integrate (2.8). The 
fact that uh depends upon wh is not a problem because wh can be computed on 
[kAt, (k + l)At] if uh is known on [0, kAt]. 

Remark 2. As before one could choose a 9 and compute the characteristics 
backward on a time interval 9 only. 

2.2. Error Bounds. Equation (2.8) is a transport equation; therefore the sharpest a 
priori bound for the solution uh, w)h is given by the LX norm of wh. Namely we have 
(2.10) IWh( X t)IL (Uh) < Iwo( )ILY(Q), 

The situation is similar when one tries to prove the regularity of the exact solution 
of the Euler equation in two dimensions. From the relation (2.10) one deduces that 
X is bounded uniformly in L'(Q). Therefore the solution of the elliptic system 

VAu = co, V u = 0, u vIQa = O 
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is uniformly bounded in L'(R+; W IP(Q)) for 1 < p < oo but not forp = oo, and 
it is not possible to prove directly that the higher order derivatives of u remain 
bounded. This fact is related to the nature of the Green's function of the Laplace 
equation: from the solution of the equation 

-A = la = 0, 

u is given by the formula 

u = VA* = (ax2 ' xi) 

and is not Lipschitzian, but satisfies the following a priori estimate 

(2.11) lu(x) - u(y)l < Clx - yl Log 
D 

lwloo 

where D denotes the diameter of the open set U2. Now let x(t) and y(t) be the 
trajectories of two particles of the fluid and denote by p(t) = Ix(t) - y(t)l the 
Euclidean distance between x(t) and y(t). Since x(t) and y(t) are the solutions of 
the differential equations 

(2.12) x(t) = u(x(t), t), j(t) = u(y(t), t), 

one deduces from (2.1 1) the a priori estimates 

(2.13) 11(t)I = Iu(x(t), t) - u(y(t), t)I < Cp Log -DIWL 
p 

By a comparison argument one finally obtains 

(2.14) (D(O) ) < p(t) D (<(D) )ec 

The first inequality of (2.14) is the cornerstone of the proof of the regularity of w 
(in COa(S2)). Then one obtains easily that u is bounded in C 1,a (see Wolibner [14], 
Schaeffer [13] and Kato [11] for details), but the bounds involve constants, like 
those in (2.14), rapidly growing with t. Nevertheless, for smooth data we have 

U E& Wlm(Q) 

To get an error estimate on 1 - chl we shall need the following lemmas: 

LEMMA 1 (TARTAR). If O < a < l and if 

(|dt(T)| C4h1c + C58(O) + C68QT) VT Ee ]0, t[, 
(2.15) 

8(t) < c7(h + At), 

then 

(2.16) 6(T) < c,(hl-a + At) VT ]0, t[. 

Proof. Note first of all that if (2.15) were an equality then 

_ C4 h1- + C5 c7(h + At)c6ge-C6et + c4hl-a(e-C6et- 11 

(2.17) ( C6 C6 CO - c5(ec6et - 1) 

(eC6e(4t) 
- 1) + c7(h + At)eC6e(T-t) 



130 CLAUDE BARDOS, MICHEL BERCOVIER AND OLIVIER PIRONNEAU 

with e = ? 1; therefore the result is reasonable. Now to prove it one has to use the 
Bellman-Gronwall lemma on time intervals of length 9 such that 

(2.18) 9 < 
I 

log(l + 1/2c5). 
C6 

Indeed on 10, 9[ (2.15) implies 

(2.19) 8(0)[I - c5(ec6 - )/c6] < 3(9)ec66 + (ec - 1)c4hla/c6 

and (2.18) yields then 

(2.20) 6(0) < 2c6ec608(9) + 2(eC60 - J)c 4h-a. 

In turn (2.15) and (2.20) imply 

(2.21) +d 6(T) c4hl-a[ + 2(eC69 - 1)C5] + 2C6c5ec 60(9) + C6AQT). 

So by repeating the same argument on T E ], 29[ and so on one finds eventually 

(2.22) d T(T) < cghl-a + clo(h + At) + C66(T), 

which yields (2.16). 

LEMMA 2. Assume that S2 is a bounded convex open set, let Th denote a regular 
triangulation of U. We will assume that Qh = U{k: k E Th) is contained in Q and 
that every interval belonging to aQh has its vertices on aQ. As usual we will assume 
that the diameter of k is of the order of h and that there exists a constant C 
independent of h and kh so that one has, for every triangle kh E Th: 

(2.23) (diameter of kh) < C(diameter of the circle inscribed in kh). 

For every function weeL??(Q), we introduce the functions 4' and 4Ah by the relations 

(2.24) 4p E Ho'(), fV VO = fwo dx VO E Ho(Q) 

(2.25) 4Ah EVh, JV'hVVh =wOh dx VOh E Vh. 
QhQ 

Then we have for any p, 1 < p < oo, 

(2.26) 14i - %phi W1"(g) < Ch1I1 |@L(). 
In (2.26) C denotes a constant independent of h and w. 

Proof. The proof follows with slight modifications the line of the proof given by 
Nitsche [12] which is also described in the book of Ciarlet [4]. First we notice that 
any Oh E Vh can be extended by zero in Q - Oh and defines a function still 
denoted by Oh which belongs to H$(Q). Therefore Vh is a closed subspace of Ho(2). 
Conversely let Hh4i be the P1 Lagrange interpolate of any function 4, E Ho(Q) n 
H2(S1), (4, being continuous, this expression makes sense). LhA vanishes on a2h; 
therefore nh4, E Vh and we have (cf. Ciarlet [4, (3.1.39), Chapter 3, ?3.1, p. 123]): 

(2.27) 14 - 1ha4+ Wk,oo(Eh) < Ch2k2/Pl 14,Iwz(, k = O or 1 andp > 2. 

Using (2.24) and the fact that w is in L??(Q), we deduce from (2.27) that we have for 
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k = 0, 1 

(2.28) 14' - Hlh 'IWk,oo(U) < Ch 2k2pIWIL-(Q). 

(As usual (2.26) is valid only for p < +oo.) Next on the space HO( W) n W' (oh) 

and on the space Vh we will use the weighted norms 

(N1) v *IvJo,.,u + hllog hl lv|ll,,s 
and 

(N2) v -*>log hlI2IvIo, + hlvll,.,. 
From (2.25) we deduce that 4Ah is the projection of 4': Ph4l (for the scalar product 
fa VuVv dx) on Vh. Therefore we have (Ciarlet [4, (3.3.6 1), p. 163]), 

(2.29) Ilog hl 1/ Ph410o'I h + hlPh4il,o,uh < c(l|lo,0% + hIlog hi I'11 ,h) 

Next we have 

Ilog hl |4 - 4hIO,o,4h + h141 - 4h I1,oo,%h 

= Ilog h1 1/21 (I - Ph)4I0,Xh + hI4' - 4Ahl1,m h 

(2.30) = Ilog h 1/2 (I - Ph)(41 
- 

V0)Io,00,,h + hI4' - 4hll,oo,%h 

< C(I41 - vhJO,,uh + hllog hl 14 - Vh I1,,), 

where C denotes a constant independent of h for h small enough, and vh any 
element of Vh. Now taking for vh the interpolate 1h4l and using (2.27) we obtain 

(2.31) 14' - 4'hIOQ,o'47h + hllog hl 1/21 - _h, 1,00 ,Qh 

< (jlog hl -l/2h2-2/p + hllog h I3/2h 1 - 2/P1) 4Iw12(,qgh). 

From (2.28) we also have 

(2.32) 14112,p,sa < C |W|L'(U)' 

These estimates remain valid for domain Q with corners of angle Oi, provided one 
has 

(2.33) max(H/Oi) < p. 

With the relation (2.21) and Lemma 2.1 we can give an error estimate: 

THEOREM 3. Assume that 2 is a smooth regular convex open set of R2 and that the 
initial data uo(.) is a smooth function (uo( ) belongs to C 2(e) for instance); then the 
solution of (Ph): (2.6), (2.7) and (2.8) converges to the solution of (2.1), (2.2) (or 
equivalently to the solution of (2.3), (2.4), (2.5)). More precisely, denoting by Ait the 
time step and by h the parameter of the triangulation, we have 

V e WEE ] 0, 1 [ there exists h?, I\ t such that: 
(2.34) 

Iwh(x, t) - o(x, t)I < C(t)(hl-E + /t) Vh < ho, Ait < A\to. [ 

Remark. In (2.34) C(t) denotes a constant depending on uo and t, but not on h, 
At, furthermore C(t) is rapidly growing towards C(T) when t increases. As we 
mentioned in the beginning of the section C(T) may itself grow very fast with T. 
Nevertheless, Theorem 3 shows that the method is of order h 1 -e + At. 
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Proof of Theorem 3. By construction 

2 Wh(X, t) - W(X, t)I < joh(XhYJ(?)) 
- WO(X X't())j 

?IW3Oh 5)Woj +jVo000 jX,t'(O) X't(?)|, 

where the second inequality was obtained from the first by adding and subtracting 

w0(Xhf""t(0)) in the first one. Therefore 

(2.36) Iwh(, t) - w(., t)I. < Cllh +IVw0oIsupjX$(x),tj(0) - XX (0)j. 
x,t 

Now by construction of Xh and X we have 

(. 
d 

(Xh3t (T) - Xx't(T)) = lUh(Xh ' (T), T) - U(Xx't(T), T) 

< Uh(', T) - U(Q, T) + IVUljXh,t "t(T) - X'(T)j 

(again to get the last inequality one adds and subtracts U(Xhiij't'(T), T)). Let 4 be the 
solution of 

(2.38) -A4 = wh in 2, 4Ir = 0. 

Then, according to Lemma 2, 

IUh(, T) - U(, T)K < IVA4ih(-, t) - VA4({, t)l| 

(2.39) + IVA4(., t) - VA%P(., t) I 

< C12h' j&^( , t)Ioo + C13ICO(&, t) - C(., t)Ioo; 

the last term comes from the continuity of (-A)-' from L(Q) into Wl (Q). Now 

(2.35), (2.37) and (2.39) yield 

dT(Xh' 
(T) - Xhx'(T)) < 

Cl2IWh(*, 
t)loohle 

(2.40) + C13 1W0h - o01w+ |IVW7oK, sup IXh (x)'tJ(0)(0) - X't (?)I) 

+ IV U I, I Xh Yt(T) - xX't(T) I. 

If we take x = x*, t = t* where the * denotes the values for which the sup in (2.40) 
is attained, then Lemma 1 gives 

Xhy(x*), tJ(t*)(0) - xx*(t*?)I < C14(h1- + At), 

and finally the Bellman-Gronwall lemma yields the result. OI 

3. Preliminary Numerical Experiments. 
Test 1. We have solved problem (2.3), (2.5), with 

2 = ], 1 [2, =c [ 
10 in [.22, .33] x [.11, .22], [1 elsewhere, 

and we have triangulated C1 with 3 families of parallel lines h = 1/9, At = .1. At 
later times w can only be equal to 10 or 1. Therefore the initial spot, w = 10, is 

expected to turn with the flow and the area of {x: w(x, t) = 10} remains constant. 
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Since our scheme is conservative in a statistical sense only the area mentioned 
above is not constant, but it fluctuates around the exact value. The spot can be 
seen to turn with the flow. 

Test 2. Similar problem in a ring. These problems are particularly difficult for 
dissipative numerical methods. 

Test 3. This test simulates the dispersion of a pollutant (chimney smoke) by a 
wind. The pollutant comes out of F1, a part of the boundary r, with initial velocity 
2.7 times the initial velocity of the wind and a vorticity of 10, while the wind has no 
initial vorticity; 2 contains a hump (hill) to illustrate the feasibility of the finite 
element method. 

I= _ I 

11~~~ \ 1/611 

/ _ \\ , _ 

t=3. t=1L5. 

r I 

lll 

II////Xj\X\\ \\;0il' 10'V' ///A\\',,\Sll. 

I~~ ~~~~~~~~~~~~~~~~~~~~ .\ _I 

t=3. t5 

LI Lt2C?X- _ IlDa* 

FIGURE 1 
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. _ . 

. 3 3. 3. 6* f t l 6. 
tUl[R f UHTfONS3 EUlLER EQURTIONS 

FIGURE 2 

Therefore we have solved 

a- + (VA)Vw = O, to(t = O)= , 

at wIr, 10, wIr2 = ? -A* = (^) 

a* rur= - ax r 2.7, *lr, =constant. 

The triangulation shows 225 nodes and At = .2. 
Computing times are 30" on an IBM 370. 168 for Tests 1 and 2 and 1 in for 

Test 3. The plottings of the vorticity (shaded area on the figures) are done by hand 
because it is piecewise constant on the triangulation. 
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-4~~~~~~~~~~~~~~~~~~7 7-2----- 

I(1 

t =.6 t =18 

FIGURE 3 

Conclusion. This work gives some results on the implementation of the method of 
characteristics in a finite element context. Error estimates and applications to the 
vortex method are given. Practical applications however will involve shocks and/or 
boundary layers if there is a slight dissipation. Extension of these results to include 
dissipation is in progress. 
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